

Solar Cooling Systems for agricultural value-chains in the Tropics and Subtropics

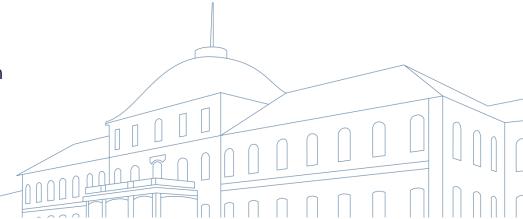
Institute of Agricultural Engineering in the Tropics and Subtropics University of Hohenheim in Stuttgart – Germany

Dr. Victor Torres-Toledo

Garbenstr. 9, 70599 Stuttgart

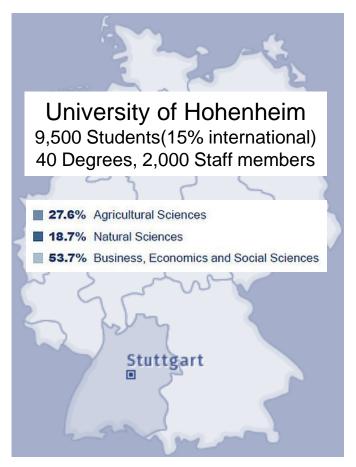
Tel: +49 711 459-22840

Victor.torrestoledo@uni-Hohenheim.de


https://agrartechnik-440e.uni-hohenheim.de/en/1670

Auftaktveranstaltung zur Informationsreise Algerien

IHK Haus der Wirtschaft Karlsruhe, 09. April 2019



Who are we?

Tropics/Subtropics group of the Institute of Agricultural Engineering

- 5 Departments (Professors)
- 150 Staff members

Attached to the multidisciplinary: Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg)

- 10 Departments (Professors)
- 100 Researchers

Tropics/Subtropics group (Prof. Dr. Joachim Müller)

- Solar Drying
- Irrigation (Solar)
- Plant oil extraction (Solar)
- Use of biogas/biomass
- Postharvest technologies
- Solar cooling

Prof. Dr. Joachim Müller

20 PhD Students6 Post. Docs.5 Technical staff2 administrative staff

From 15 countries!

Facilities of the Institute of Agricultural Engineering

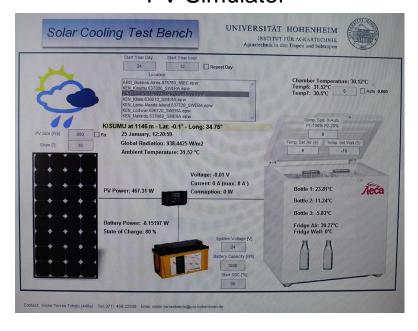
Metal Workshop Wood Workshop

Electric/Electronic

Laboratories

Research hall

Greenhouse


Solar cooling testing facilities

Weather profile

Solar Power profile PV Simulator

Solar cooling team

Victor Torres-Toledo

Julian Krüger

Farah Mrabet

Muaz Bedru

Ana Salvatierra-Rojas

Juliet Kariuki

Florian Männer

Kilian Blumenthal

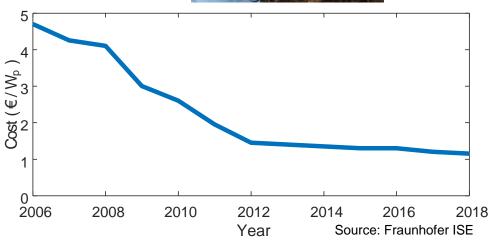
Motivation of cooling for food value chains

- Saves nutritional value and taste
- Minimizes mass loss and slows ripening
- Controls rate of growth of microorganisms

Business opportunities

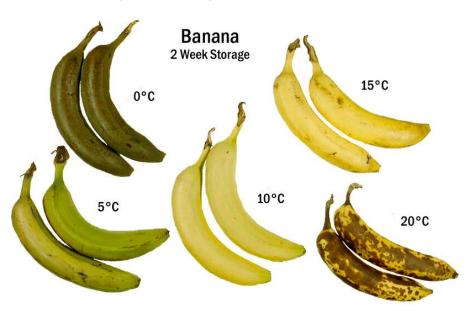
- Helps to reduce postharvest losses
- Increases product quality
- Gives access to new markets

Challenges in rural areas


- Low quantities
- Limited electricity access
- High ambient temperatures
- Lack of infrastructure

Opportunities

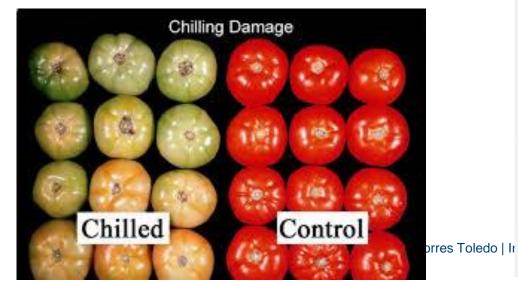
Cost reduction of PV panels

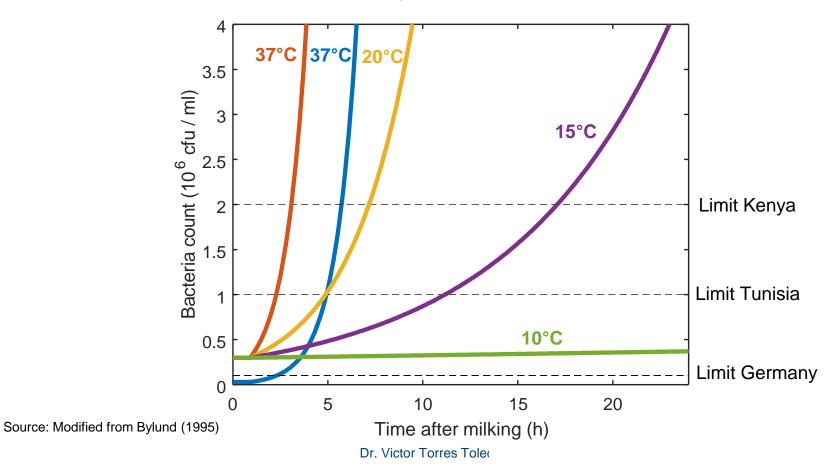


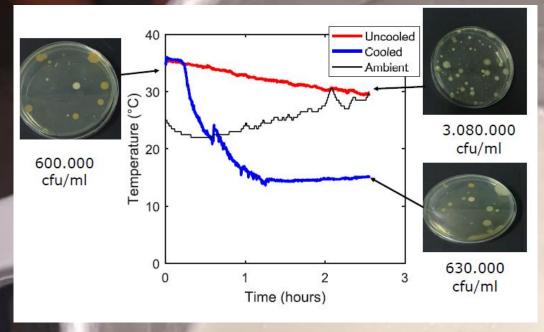
HEIM

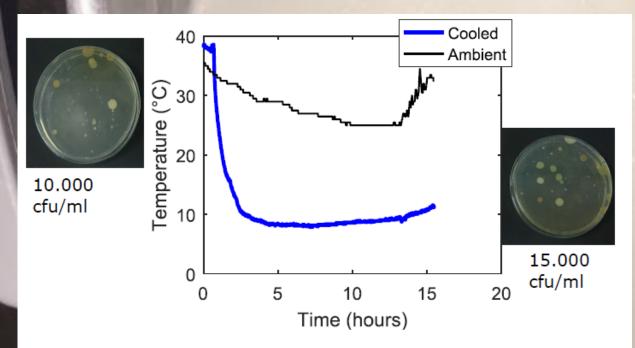
Chilling damage

Source: UC Davis Postharvest Technology Center, University of Delaware




Table 5.2 Fruits and vegetables susceptible to chilling damage (sources: Hardenburg et al., 1986; IIR, 2000; McGlasson et al., 1979; McGregor, 1989)


Commodity	Lowest safe temperature (°C)	Damage
Apples		
certain varieties	1-2	Internal browning, brown core
Avocados		
West Indian	11	Pitting, internal browning
Other varieties	5-7	Pitting, internal browning
Bananas	12-13	Dull color, blackening of skin
Beans	7-10	Pitting and russeting
Cucumbers	7-10	Pitting, water-soaked spots, decay
Grapefruit	7	Scald, pitting, watery breakdown, internal browning
Lemons	13-14	Internal discoloration, pitting
Mangoes	5-10	Internal discoloration, abnormal ripening
Melons		1 0
Cantaloupe	7	Pitting, surface decay
Honeydew	4-10	Pitting, surface decay
Watermelons	2-4	Pitting, objectionable flavor
Oranges	3	Pitting, brown stains
Papaya	6	Pitting, water soaking of flesh, abnormal ripening
Potatoes	3-4	Mahogany browning, sweetening
Tomatoes	7-10	Water soaking and softening

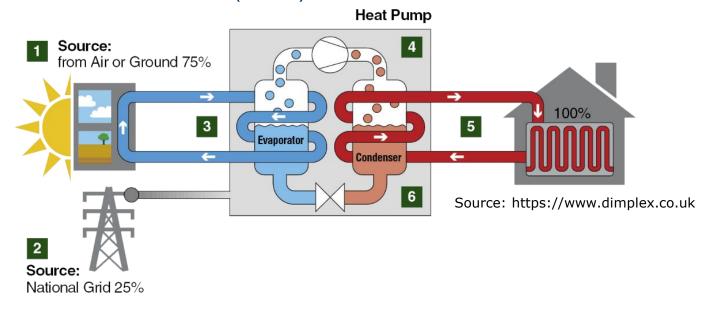

Milk Cooling

- Raw milk has around 37°C after milking
- Highly perishable due to rapid bacteria growth
- Preservation of milk quality through reduction of temperature

5 Times better quality after 2.5 h

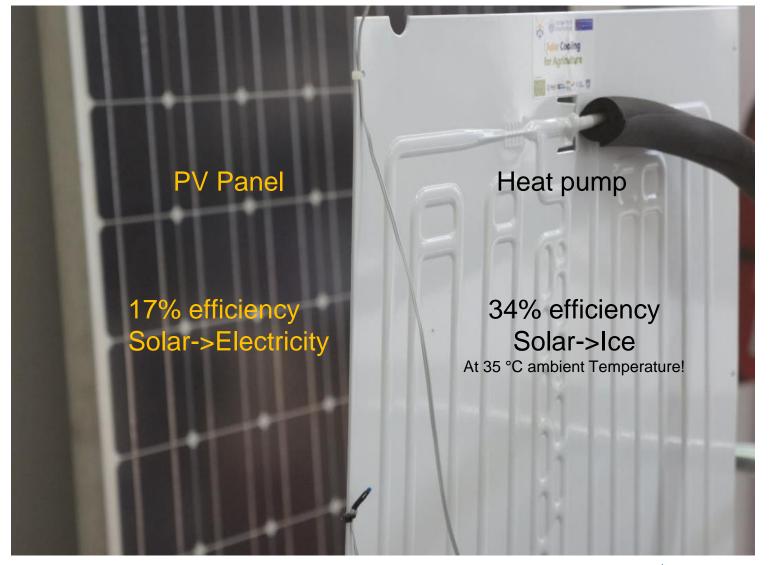
Effective quality preservation up to 16 h!

Refrigeration methods



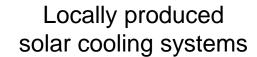
Coefficient of Performance (COP)

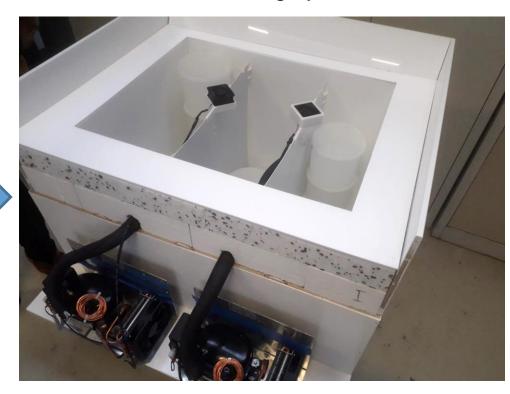
COP Refrigeration cycle (real) *


		T warm (°C)		
		20 30 40		
T cold	4	2.6	2.1	1.8
T cold (°C)	-10	1.6	1.4	1.1

^{*} Different for each refrigeration system

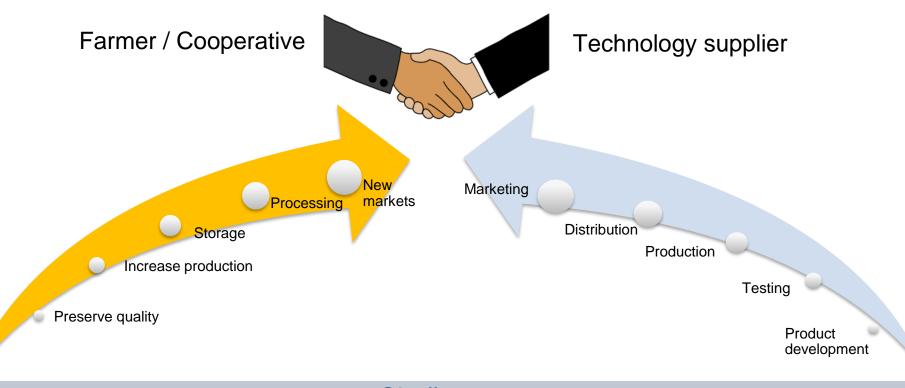
Solar cooling with vapor compression heat pumps





Promote key components instead of key systems

Solar cooling units +
Electronics and sensors +
Know-how



Business models

Challenges

- No quality based pricing
- Seasonal fluctuations
- Strong informal market
- Unreliable customers

- High transportation cost
- Lack of investments for R&D
- Expensive distribution and maintenance in rural areas

3 Example Systems

Example System 1: Solar ice-maker

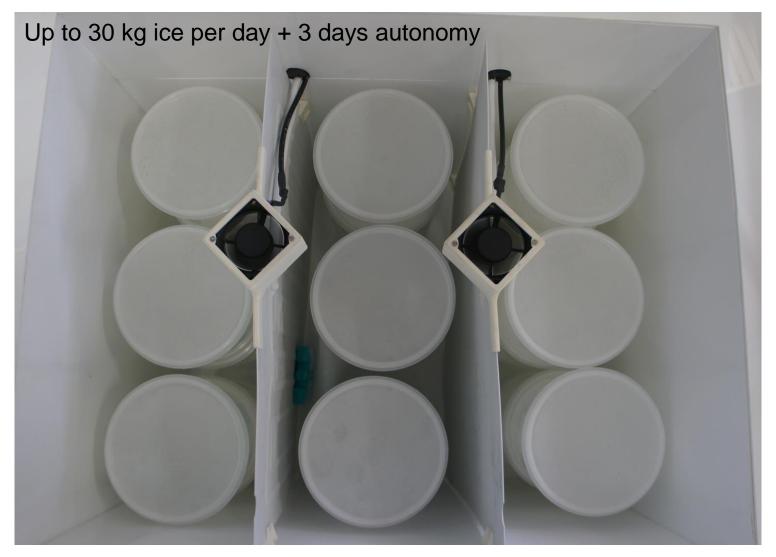
Example System 2: Refrigerator battery-free

Example System 3: Water Chiller for cold rooms And water bath milk cooling

Solar ice-maker



Dr. Victor Torres Toledo | Institute of Agricultural Engineering | Tropics and Subtropics Group

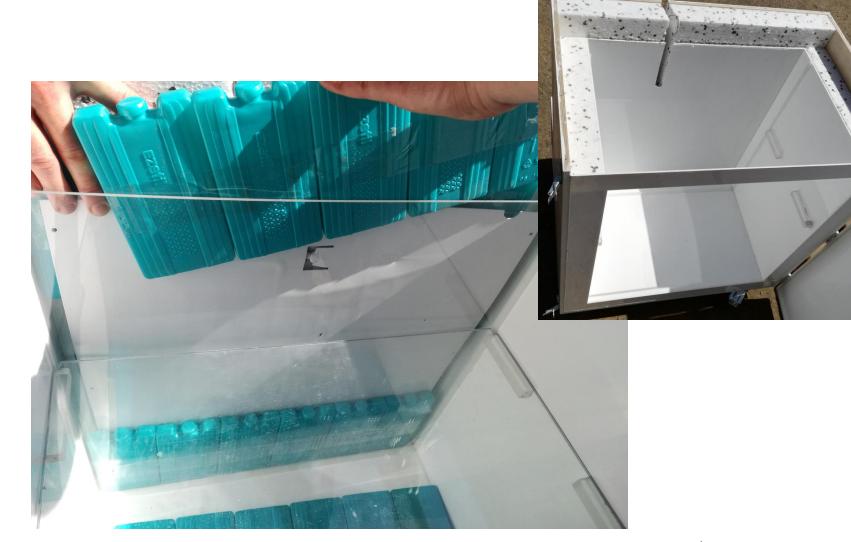


Solar ice-maker

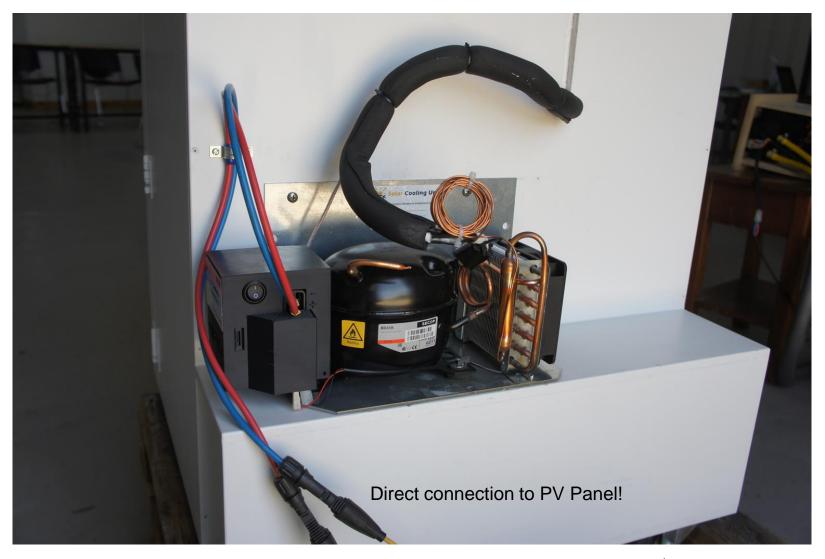
Solar ice-maker

Solar milk cooling in insulated milk-cans with ice compartment

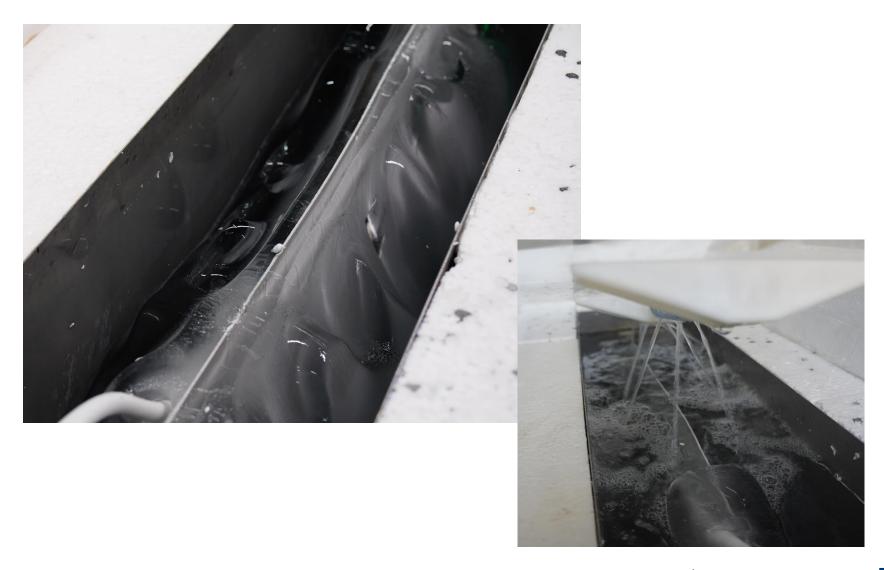
Cooling on-farm or during transport to collecting centers



Battery free refrigerator


Battery free refrigerator

Battery free refrigerator


Water chiller

Water chiller

Water chiller for cold rooms

Water chiller + water bath for milk cooling

Scalability (Water Chiller)

1 Solar Cooling Unit

4 m³ cold rooms or 80 L milk/day

12 Solar Cooling Units

20 feet container or 1000 L milk tank

Importance of climate friendly refrigerants

- R134a has Global Warming Potential (GWP) of 1400 kg CO₂ equivalent per kg
- Natural refrigerants as R290(Propane) or R600a(Isobutane) have GWP of around 3 kg CO₂ equivalent per kg.


Good to know!

The refrigerant of a typical solar refrigerator with R134a implies the Co₂ eq. emissions that are saved through the use of PV-Panels during almost 7 years!

Therefore, Solar always with natural refrigerants!

Solar cooling manual

Manual

DIY Solar Cooling

Assembly

5.2.2 Construction and assembly

Figure 23: Wooden box (u.l.), polystyrene insulation material (u.r.), ice packs for ice storage around the evaporator (d.l.) and the acryl glass plates for the internal covering

Figure 24: Gluing of the polystyrene insulation and internal acryl glass covering

۷ic

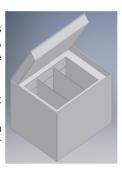
5.3.2 Construction and assembly

Figure 29: Wooden box (I.) and metal water container (r.) of the water chiller

Figure 30: Cut insulation material for the ice storage (I.) and the painted wooden box with the integrated insulation material and metal box (r.)

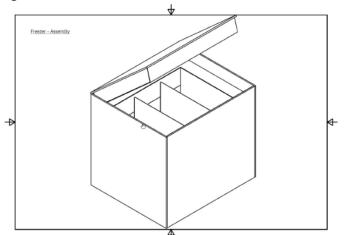
Solar cooling manual

5 Construction and Performance


This chapter describes the process of designing, constructing and assembling of the example systems. Furthermore, a few results from performance tests are added.

5.1 Solar smart ice-maker

The goal for the Solar Smart Ice-Maker (SSIM) is to produce as much ice as possible, using energy from PV panels only. A battery together with a charge controller is connected to the Solar Cooling Unit (SCU).


The scope for the design and construction is only on the box itself and the assembly with the SCU.

For this design, the freezer compartment had to be big enough to store 27 plastic tins with 2 litres volume each. Two Solar Cooling Units are used in this setup.

5.1.1 Drawings

In the following, the CAD drawings are shown. The dimensions are derived from considering that 27 tins shall fit.

5.2.1 Drawings

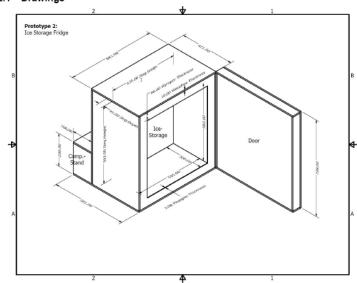
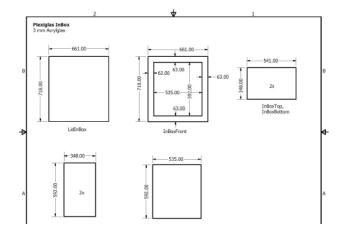
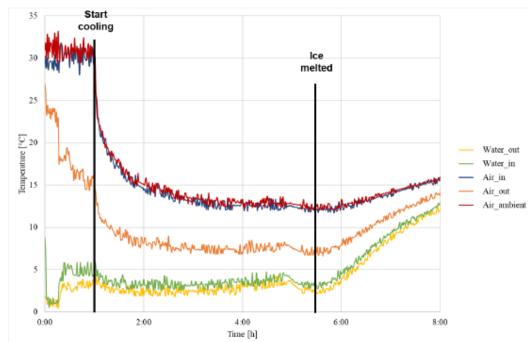



Figure 20: Drawing of the whole DDR with wooden box, insulation material and internal acryl glass cover

Performance

5.1.3 Performance

Table 1: Experimental setup for testing the performance of the SSIM


3 p			
Ambient temperature:	30	°C	
Water storage:	54 (27x2)	kg	
Initial water temperature	18	°C	
Freezing time	65	h	
Total time	92	h	

25 20 All ice tins Start freezing frozen 15 10 Temperature [°C] -10 -15 -20 -25 0:00 12:00 12:00 12:00 0:00 12:00 0:00 Time [h]

b) Discharge with cooling room application

Table 4: Experimental setup for testing the performance of cooling room application

Initial ambient temperature	30	°C
Ice mass	26	kg
Cooling time	4.5	h

Solar Cooling Design Tool

1 Geographic Data January **February** March April May June Mean daily temperature [°C]: 26 26 26 25 23 25 Solar irradiation [kWh/m² day]: 6.2 6.6 6 5.3 4.6 4.3

Input of parameters

Select System:

Water chiller for milk cooling

Smart ice-maker
Battery-free refrigerator
Water chiller for milk cooling
Water chiller for cold rooms
Own system design

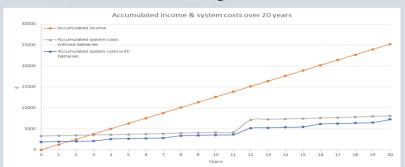
Product information

Total mass to be cooled Moisture content of the product or Heat capacity of the product

Mass =	70	kg or I
MC =	99	% wet base
cp =	0	kJ/kg K

Temperature information

Initial temperature of the product
Final temperature of the product
Time to cool down the product
How often do you cool down the product


$$T_i = 35$$
 °C $T_m = 4$ °C $t = 4$ h per month

Solar Cooling Design Tool

Results

Water chiller for milk cooling Selected System:

System Design without batteries

Cooling units needed:

System Design with batteries

Cooling units needed:

1950	€	
819	Wp	
900.9	€	
	819	

Cooming annes moderate		
Cooling units costs:	650	€
Solar PV size:	420	Wp
Solar PV costs:	462	€

Battery size:	168	Ah @12 V
Battery costs:	336	€

Total initial investment	3301	€
Payback period:	2.8	years
Net present value:	9,656	€
Internal rate of return:	35	%

Total initial investment	1898	€
Payback period:	1.6	years
Net present value:	10,749	€
Internal rate of return:	60	%

References

Projects

- CGIAR. (2015). Field testing of an innovative solar powered milk cooling solution for the higher efficiency of the dairy subsector in Tunisia. Retrieved from https://mel.cgiar.org/projects/spmc
- PARI. (2015). Program of Accompanying Research for Agricultural Innovation. Retrieved from http://research4agrinnovation.org/
- GIZ-Powering Agriculture (2017) Assessment of business opportunities through the introduction of solar milk cooling in rural Colombia https://www.uni-hohenheim.de/organisation/projekt/assessment-of-business-opportunities-through-the-introduction-of-solar-milk-cooling-in-rural-colombia
- GIZ- Powering Agriculture (2017) Piloting business models for solar milk cooling in Kenya https://www.uni-hohenheim.de/organisation/projekt/piloting-business-models-for-solar-milk-cooling-in-kenya
- GIZ- Powering Agriculture (2018) Promotion of solar refrigeration for agricultural value-chains in Kenya https://www.uni-hohenheim.de/organisation/projekt/promotion-of-solar-refrigeration-for-agricultural-value-chains

Knowledge Management

https://energypedia.info/wiki/Do It Yourself - Solar Cooling Units
https://energypedia.info/wiki/Solar Milk Cooling with Insulated Milk Cans

https://www.facebook.com/solarmilkcoolingteam/

https://www.youtube.com/channel/UCeDM 4R0hrjWsj3ElKxYDrQ

Publications

- On-farm milk cooling solution based on insulated cans with integrated ice compartment, International Journal of Refrigeration (2018), https://doi.org/10.1016/j.ijrefrig.2018.04.001
- Design and performance of a small-scale solar ice-maker based on a DC-freezer and an adaptive control unit, Solar Energy (2016), https://doi.org/10.1016/j.solener.2016.10.022
- Performance characterisation of a small milk cooling system with ice storage for PV applications, International Journal of Refrigeration (2015), https://doi.org/10.1016/j.ijrefrig.2015.06.025

Capacity Building and engineering services

http://solar-cooling-engineering.com

Acknowledgments

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Thank you for your attention!

Merci beaucoup pour votre attention!