

Energy from Biomass – a multilateral, sustainable and reliable Alternative to Oil, Gas and Coal

Basic Informations, Profitability and Best Practise Examples in the Sector of Bioenergy

C. Letalik, Engineer of Agriculture, C.A.R.M.E.N. e. V.

Who is C.A.R.M.E.N. e. V.?

<u>Central Agricultural Raw materials Marketing and</u> <u>Energy Network</u>, registered non profit association

- Coordination office for renewable resources in Bavaria
- ▶ Founded in 1992, 70 members, 40 employees
- Consulting, public relations and project management with regard to <u>energetically use of biomass</u>, bank reports
- Project assessment and project evaluation for the Bavarian Ministry of Economy, Media, Energy and Technology
- Further information: <u>www.carmen-ev.de</u>
- ▶ Christian Letalik, cl@carmen-ev.de

Evaluated Biomass Heat Plants in Bavaria

Criteria of efficiency → Biomass boiler → → 2,500 full load hours in a bivalent system → 2,000 h monovalent → Heat pipeline → → 1,500 kWh/m, year heat density in the DH grid → → 1 km → 1,500 MWh heat demand by all clients in the district heating

More than \bigcirc 400 biomass heat plants (0,1 MW_{th.} – 5 MW_{th.}) (with heat grid) in Bavaria. <u>Supported</u> with investment <u>subsidies</u> by the Bavarian Government and evaluated over 7 to 12 years \rightarrow sources for *long term* technical and economical data. 15 CHP woodgasifiers

Electricity from renewables => 35% – a good mixture in Germany

- 20% of renewables based electricity supply from biomass,
 dominated by biogas plants (2/3), 1/3 from solid fuels.
- Barely 50% from wind energy onshore and wind energy offshore (quickly rising)
- 20% from PV and 7,5 % from hydropower
- 3,5% from waste

Number of CHP Biomass Plants incl. Wood Gasification Systems

Renewable Energy Heat Supply in Germany 2015

Source: BMWi, AGEE-Stat, FNR 2016

C.A.R.M.E.N

Biomass Heat Plant–System \rightarrow efficient and profitable heat sinks

very good conditions	++ swimming pools, hospitals, dormitories, ++ wood processing plants with drying station, laundries, dairies, breweries, slaughterhouses, fo industry in general (fish, fruit, meat), greenhou ++ hotels, spa areas, residential areas and apartn buildings; FOSSIL DISTRICT HEATING SYSTEMS	ood ises, nent S
good conditions	 + new developement areas, densely populated + municipal and office buildings, schools + commercial areas and industrial areas + farming such as chicken / pig breeding maybe combination of solar heat and biomass 	
bad conditions	 low energy houses residential areas with few houses small individual objects with low heat demand such as storage halls 	

Biomass Heat Plant System – Technical Design

Dimensioning of a Biomass Heat plant – Wood Chip Boiler

Dimensioning of Wood Chip Boilers – Ø Full Load Hours

Efficiency of a Biomass Heat plant Project – heat losses - heating coverage capacity [MWh/(m*a)]

Minimal proportion of heat demand should be 1,5 MWh/m, year. ▶ example: 1 km of heat pipe should transport at least 1.500 MWh of heat to the clients (replacing 150.000 litres of heat oil): heat losses not included heat losses in district heating network should be kept as low as possible in terms of efficiency and profitability. ► Target value: 15%

PARAMETERS TO REDUCE HEAT LOSSES

Structure of costs of a Biomass Heat plant Project

Capital Investment (amount of annuity) – Overhead costs

- Investment for building (heating house, bunker, chimney) and heat pipe
- ▶ wood chip fired boiler; fossil boiler for peak demand ♥
- hydraulic systems, control technology
- pumps, compressor and other components
- installation and commissioning
- technical planning and design, building permission

Consumption bound costs – variable costs

- wood chips, heating gas oil, natural gas;
- electricity, waste (ash) management

Operating and other costs

- manpower costs for maintenance and repair, cleaning
- management, insurances, measurement of fume etc.

Structure of costs of a Biomass Heat plant (wood chips)

2019: same structure; average full costs 8-9ct/kWh

Structure of costs in %, on the left in €/MWh

- Fuel costs for biomass: ~ 30 40 %
- Fuel costs for gas or fuel oil: ~ 5 10 %
 - Costs for electricity: $\sim 3 5 \%$
- Capital costs: ~ 30 40 %
- Operating costs: ~ 15 20%
- Costs for waste disposal (wood ashes): 1-3 %
- Fuel costs for (natural) biomass with about 35 -45 % of total costs – larger share than capital costs (principal and interest costs)
- → No waste wood or landscape material as biomass fuel calculated! Price for wood chips in Germany = 2,5 ct/kWh = 85 €/to

Combination of Biomass Heat Plant and Heat from Biogas CHP

Best Practice: Agricultural Academy Triesdorf

Bioenergy project "LLA Triesdorf" about 50 km in the west of Nuremberg, Bavaria \rightarrow a combination of

- Biomass heat plant with 2 wood chip boilers 1,4 MW and 0,7 MW
- Biogas plant with 250 kW electrical output and 200 kW thermal output from cogeneration unit
- 40 buildings (diary, university, offices, restaurant, stables, operating rooms etc.) are 100 % supplied by heat from biomass all over the year. No fossil fuels.
- Groundload up to 200 kW _{th.} from Biogas cogeneration unit (CHP) for 8,000 hours per year.
- Middle load supplied by one of the wood chip boilers depending on season (spring / autumn)
- In the high winter season both wood chip boilers are running.
- Biogas Plant is fed by maize and grass silage and slurry from the own agricultural holding.

OVERVIEW ON SOLID BIOFUELS

Prices of Solid and Fossil Fuels in €-Cent per kWh netto

Prices for wood chips, wood pellets, split logs and other solid biomass fuels in Germany

	Fuel oil	Wood chips (35% H ₂ O)	Split logs 33 cm	Wood- pellets	corn	Straw	Straw - pellets	Miscan -thus	Olive residues (nuclei) in Spain
Cur- rent price	0,60 €/l	<mark>85</mark> €/t	60 €/m³	220 €/t	200 €/t	<mark>80</mark> €/t	150 €/t	<mark>80</mark> €/t	150 €/t
Costs per kWh in €- cent	6,0	2,5	4,5	5,0	4,0	2,0	3,5	2,0	3,5

Price for natural gas: 3 €-Cent up to 8 €-Cent per kWh !!

C.A.R.M.E.N. Index for Prices of Solid and Fossil Fuels

Residues from Oil and other food production - *solid fuels?*

TEST: Firing pellets from Olive residues – no slag

STRAW AS A SOLID FUEL FOR HEATING

- + Straw is available in rural areas (mind humus!)
- Technology for burning, harvesting and storage is state of the art (special German, Austrian and Danish boiler technology is available)
- Although ash melting point is significantly lower
- Storage = harvest campaign during few weeks

- Higher ash content, higher CI and S content could lead to corrosion problems \rightarrow Higher requirements to the combustion technology and flue gas cleaning (bag filter, electric filter)

Removal of humus feedstock and C by straw utilization

Solid Fuels from Tree Cuttings in one efficient Working Step

Efficient Wood Chipping along the Forest Road

- Allocation as decoupled process step with large mobile wood chipper
- On-site chipping can be approved if the truck can approach properly (driveway should be 8-10 m wide, flat and not steep)
- Raw material should be stored consitently with the thicker end horizontally right angled to the forest road
- Feeding of chippers often is organized on the right!
- Highest productivity for round timber is Ø 100 m³/h, for forest residues (crown and branches) Ø 75 m³/h
- The stronger the chipper's gear the higher the output
- Output/h for softwood > hardwood
- Knife sharpness is very important!
- Overall efficiency is dependent on adjusting the logistics to the chipper's efficiency – to avoid waiting time!
- Avoid input of soil, stones etc.

Wood gasification system – example for a funktional schematic

ightarrow required space at least 6 m x 5 m and 2,5 - 3,5 m of hight. CHP 45 kW $_{el.}$ 120 kW $_{th.}$

Wood Gasification CHP (wood chips), 45 kW_{el.} // 110 kW_{th.}

Spanner Re² HKA 45

Farmer family, milk production San Cassiano

- Dairy farm 1,600 m over NN, Dolomite Alps, Italy
- Heat use in the house and in stables for the cows
- Drying system for hay and woodchips

Wood Gasification CHP (wood chips), 30 kW_{el.} // 70 kW_{th.}

Spanner Re² HKA 30 "Haus Blatthofer" im Lesachtal, 2015

- Small hotel with rooms for 10 guests
- Drying system for wood chips and split logs
- District heating in the neighbourhood

WHY (DISTRICT) HEATING WITH BIOMASS?

Benefits for the clients (private and industrial)

- Home comfort, no more work and responsibility for heating, no boiler room
- Competitive costs for heating, long term contracts

Benefits for the area

- Utilization of domestic resources
- Valorization of lower-quality energy wood
- Increasing added value for the local economy

For the environment

- Climate-neutral heating
- Combined Heat and Power (CHP) possible?

Thank you for listening. Do you have any questions?

Federal Ministry

for Economic Affairs and Energy

Federal Ministry for Economic Affairs and Energy

Energy from Biomass – a multilateral, sustainable and reliable Alternative to Oil, Gas and Coal

Christian Letalik, C.A.R.M.E.N. e. V. <u>cl@carmen-ev.de</u> +49-160/8575069

Thank you for your attention!

Hotel Facility – Real Case Best Practise Example with Biomass

Max. heat load 800 kW; heat demand 1,700 MWh/a; 2,125 full load hours

- 180 rooms and apartments
 Outdoor pool, indoor pool
 Wellness, beauty, sauna, whirlpool, steam bath, fitness center etc.
- Different restaurants, bars
- Full summer/winter season
- Heat demand 1,700 MWh/a
- * For heating and hot water
- ✤ Full Service Heat Contracting

Biomass Heatplant Calculation – Real Case HOTEL

Investment Plan for a Biomass Heatplant - Hotel Complex 800 kW

Biomass Heat Plant - supplying a hotel complex with 180 units		Invest in T€ netto		
Name of component	specification	SUM in €	% of invest	
Biomass components (boiler, buffer tank, conveyer)	540 kW Pellets	145	31	
Peakload components (2 boilers, existing)	800 kW heatoil	20	4	
Hydraulic systems		20	4	
Building (heating house, bunker etc)	separate building	160	34	
Heat pipeline	170 meters	105	22	
House connection/heat exchanger (incl. in pipeline)		0	0	
Planning costs		25	5	
Other costs		0	0	
Total investment		475	100	
Subsidies		100	21	
Total investment minus subsidies		375	79	

Federal Ministry

and Energy

for Economic Affairs

Investment Plan for a Biomass Heatplant - Hotel Complex 800 kW

Herkunft	Verfügbare Bioenergie	Energiepotenzial (PJ)
Biogas aus Nutztierhaltung (m ³)	20.100.000	0,506
Äste von Obstbäumen (t)	211.257	0,739
Getreidereste (t)	634.000	8,876
Reste von Hülsen- und Ölfrüchten (t)	3.858	0,038
Reste der Verarbeitung von Holzstämmen (m ³)	1.141.398	7,524
Brennholz (m ³)	1.464.706	13,181
Geäst (m³)	599.251	2,621
Gesamt		33,485

Biomass Heatplant Calculation – Real Case HOTEL

			Capital	costs					
	Invest netto €	Operating life a	Rate of interest %	Annuity %	Capital costs €/a	Reserves for repairs %	Reserves for repairs €/a	Investment costs €/a	
Biom	145.000	15	2,5	8,07	11.704	2	2.900	14.604	5 600 € less capital
Peak	20.000	15	2,5	8,08	1.615	2	400	2.015	costs because of 21%
Hydr.	20.000	15	2,5	8,08	1.615	2	400	2.015	\sim subsidios \rightarrow moons
Build	160.000	40	2,5	3,98	6.374	1	1.600	7.974	
Grid	105.000	40	2,5	3,98	4.183	1	1.008	5.191	$3,30 \in \text{less per wwwn} =$
Grid	0	40	2,5	3,98	0	1	0	0	$0,33$ ct / kwn less \rightarrow
Plan	25.000	30	2,5	4,81	1.202	0	0	1.202	for total heat demand
other	0	30	2,5	4,81	0	0	0	0	= 1.700 MWh per year
Σ	475.000				26.693		6.308	33.001	
Subs	100.000								
Σ	375.000				21.087		6.308	27.395	

Biomass Heatplant Calculation – Real Case HOTEL

Price for pellets / heat oil Fuel costs pellets / heat oi Costs for electricity	220 €/t I 79.188 €/a 4.590 €/a	0,7 €/liter 21.550 €/a	Wood pellets: 220 €/ton = 4,5ct/kWh caloric value
Sum of fuel costs	79.190 €/a	21.550 €/a	Weedshine
Sum of costs for fuel and elect	85 €/ton = 2.5ct/kWh		
Manpower requirement	357 h/a	0 h/a	caloric value
Wages per hour	14 €/h	1 4 €/a	
Manpower costs/year	5.000 €/a	<mark>0</mark> €/a	
Insurance ~ Operating life	0,3% of total invest 30 a		Olive residue
Rate of interest	2,50 %		
Length of pipeline	170 m		
Heat losses per year	45 MWh		
Heat losses / m pipeline	30 W/m		
Heat losses in nineline	25%		

Total costs calculation - Hotel Complex 800 kW – Pellet boiler

	Total Costs Co	lculation			
I	Pellet boiler (ground load	d)	Peak load (oil/gas)		
Fuel costs	79.190 €/a		21.550 €/a		
Electricity	4.590 €/a		0 €/a	A CONTRACT	
Disposal of ash	1. 270 € /a		0 €/a		A Provide States
Sum	85.050 €/a		21.550 €/a		
Sum of consum	nption costs	106.600 €/a	68%		
Management co Preventive main Maintenance co Insurance/regula <u>Sum of operati</u>	osts tenance osts ations ng costs	5.000 €/a 5.000 €/a 5.000 €/a 2.500 €/a 17.500 €/a	Administration Service Cleaning Metering 11%		Using wood chips (530 t/a) instead of woodpellets (360 t/a → = 45,000 €/a instead of 79,000 €/a costs for solid fuels → 77,40 €/MWh → 1,5ct/kWh less
<u>Sum of investm</u>	nent costs	<u>33.001 €/a</u>	21%		
<u>Total costs p</u>	er year	157.101 €/a			
<u>Total costs p</u>	er MWh	92,41 €/a	1,7 GWh/a		

Total costs calculation - Hotel Complex 800 kW – wood chip boiler

	Total Costs	Calculation			
wood chip	boiler (ground le	oad) P	Peak load (oil/gas)		
Fuel costs	<mark>45.150</mark> €/a		21.550 €/a	Contraction of the	
Electricity	4.590 €/a		0 €/a	- Charles	
Disposal of ash	<mark>3.000</mark> €/a		0 €/a	A WAY AND A	
Sum	52.740 €/a		21.550 €/a		
Sum of consump	otion costs	74.290 €/a	56%		
Management cost Preventive mainte Maintenance cost Insurance/regulat <u>Sum of operating</u>	ts nance ts ions g costs	5.000 €/a 5.000 €/a <u>9.800</u> €/a 2.500 €/a 22.300 €/a	Administration Service Cleaning Metering 17%		Using wood chips (530 t/a) instead of woodpellets (360 t/a) → = 45,000 €/a instead of 79,000 €/a costs for solid fuels → 77,40 €/MWh → 1,5ct/kWh less
<u>Sum of investme</u>	nt costs	<mark>35.034</mark> €/a	27%		
<u>Total costs pe</u>	r year	131.624 €/a			
<u>Total costs pe</u>	r MWh	77,43 €/a	1,7 GWh/a		

