

Energie-GR Kap Verde

EnergieEffiziente Gebäudetechnologien und Erneuerbare Energien (PV) Passive House an ideal basis for energy efficient building design Renewable Energy (PV)

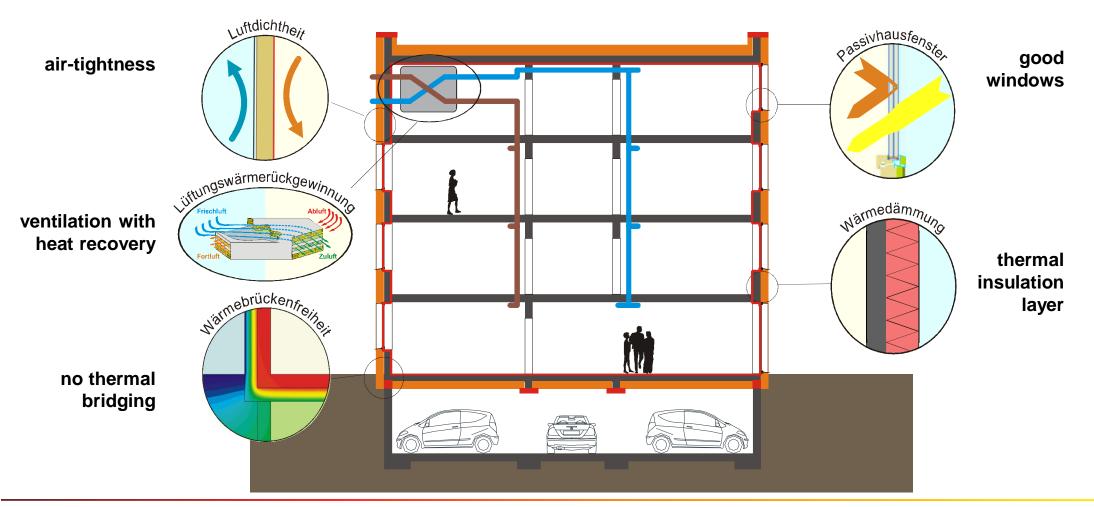
Dr. Berthold Kaufmann Passive House Institute

Passive House Building design in a nutshell.....

Contents and Summary

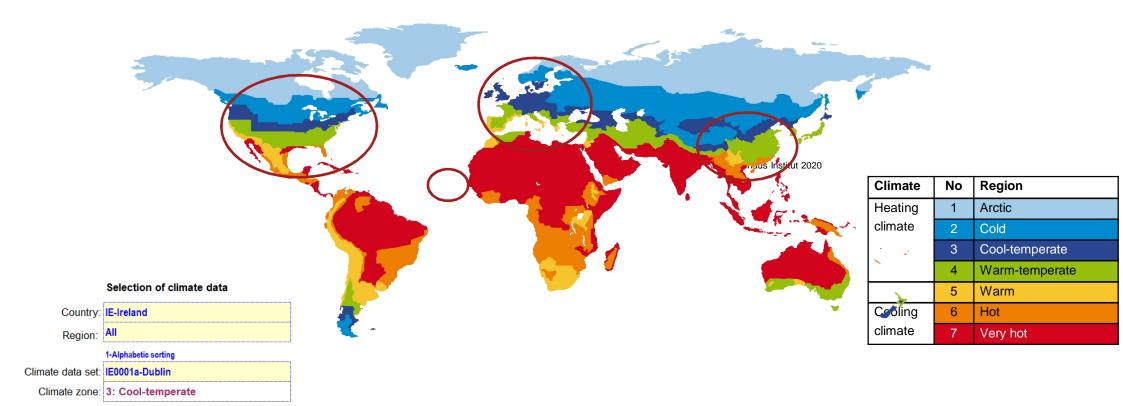
what is essential for Energy Efficient Passive House buildings!

- thermal insulation layer (thick enough!) is absolutely needed
- thermal bridge optimized design, air-tightness and good windows
- fresh-air-ventilation system with heat recovery
- low power heating (AC) system including hot water preparation


everything is economically reasonable for new built and reftrofit (EnerPHit)

Renewable Energy (PV) is welcome: PER assessment

- Quality control has to be done during realization:
- training of tradesperson is crucial!
- Routine helps for Quality!... repeat again, what you have learned once!


The five main features of PH buildings!

Check with PHPP for all international climate zones

- Cooling load and dehumidification (latent cooling) is crucial in Climate Zone 4...7
- detailed check with PHPP should be done for each individual building

Same components usable for retrofit of buildings

EnerPHit Standard for renovation

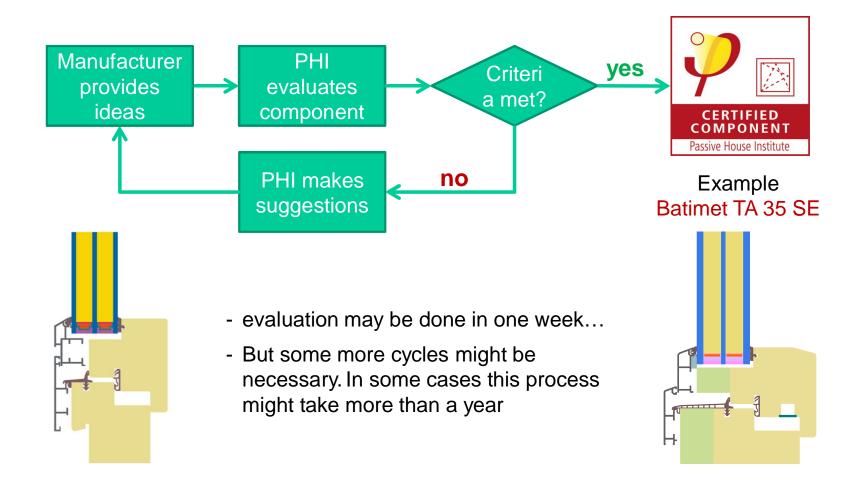
- Guideline and incentive for an optimal efficiency standard for retrofits
- Certification as quality assurance for building owners

Energy Retrofit with Passive House Components

Global Component Criteria

the building component method for retrofit:

	Opaque envelope ¹ against				Windows (including exterior doors)					Ventilation	
Climate zone according to PHPP	ground				Overall ⁴		l ⁴	Glazing ⁵	Solar load ⁶		ilation
	Insu- lation	Exterior insulation	Interior in- sulation ²	Exterior paint ³	Max. heat			Solar heat gain	Max. specific		Min. hu- midity
	Max. heat transfer coefficient (U-value)			Cool colours	transfer coefficient (U _{D/W,installed})		ent	coefficient (g-value)	solar load during cooling period	reco- very rate ⁷	re- covery rate ⁸
	[W/(m²K)]			-	[W/(m ² K)]			-	[kWh/m²a]	%	
Arctic		0.09	0.25	-	0.45	0.50	0.60	U _g - g*0.7 ≤ 0		80%	-
Cold	Deter-	0.12	0.30	-	0.65	0.70	0.80	U _g - g*1.0 ≤ 0		80%	-
Cool- temperate	mined in PHPP	0.15	0.35	-	0.85	1.00	1.10	U _g - g*1.6 ≤ 0		75%	-
Warm- temperate	from project specific	0.30	0.50	-	1.05	1.10	1.20	U _g - g*2.8 ≤ -1		75%	-
Warm	heating	0.50	0.75	-	1.25	1.30	1.40	-	100	-	-
Hot	and cooling degree days against ground.	0.50	0.75	Yes	1.25	1.30	1.40	-		-	60 % (humid climate)
Very hot		0.25	0.45	Yes	1.05	1.10	1.20	-		-	60 % (humid climate)



or alternatively, energy demand method:

	Heating	Cooling			
Climate zone according to PHPP	Max. heating demand	Max. cooling + dehumidification demand			
	[kWh/(m²a)]	[kWh/(m²a)]			
Arctic	35				
Cold	30				
Cool- temperate	25	equal to Passive House requirement			
Warm- temperate	20				
Warm	15				
Hot	-				
Very hot	-	© PHI			

Certification process – developing high performance components

Curtain wall construction Sayyas, Harbin

operable wing to be included to curtain wall construction

Thermal data for the window frame

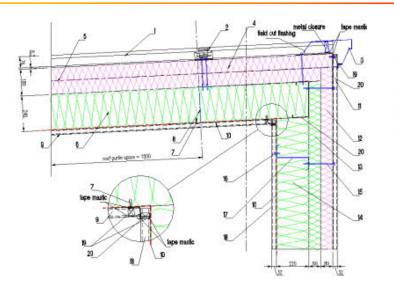
W/(m ² K)]	[mm]	[W/(mK)]	[-]			
700	•					
		SWISSP.	Ultimate PU*			
0.66	75	0.040	0.72			
0.66	75	0.040	0.72			
0.75		0.030	0.68			
Thermal glas carrier bridge χ _{GT} [W/K]:						
	0.66 0.75 bridge χ _G	0.66 75 0.75	0.66 75 0.040 0.66 75 0.040 0.75 0.030 bridge χ _{GT} [W/K]:			

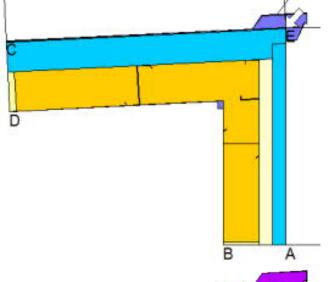
^{1:} Includes $\Delta U = 0 \text{ W/(m}^2\text{K)}$, determined by 3d-thermal flux sim. (PHI)

Category: Curtain wall
Manufacturer: Harbin Savva

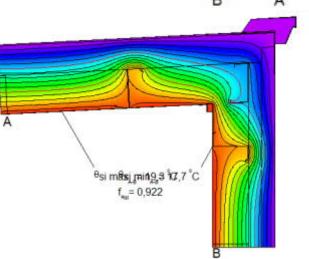
Harbin Sayyas Windows Stock Co. Ltd

150088 Harbin, China


Product name: Pcw70

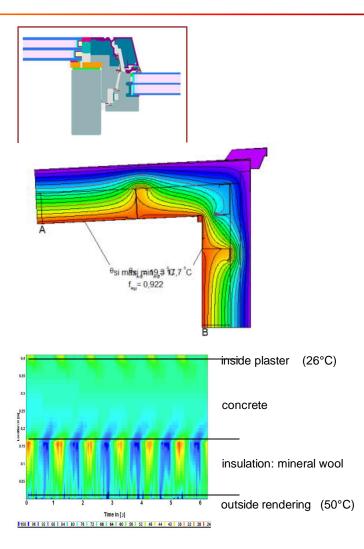


^{2:} Determined by 3d-thermal flux sim. (PHI)



prefabricated steel construction

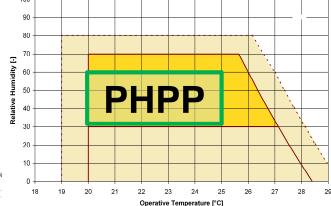
- check for inside outside
- steel construction needs special attention on screws and other penetrations of insulation layer
- overall average U-value including screws must be evaluated carefully
- prefabrication is good to guarantee for quality

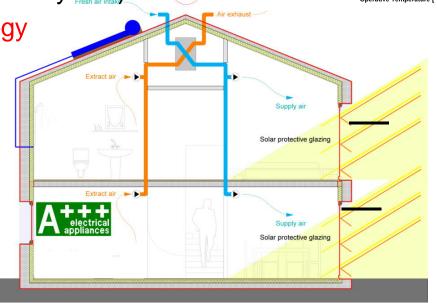


Component evaluation & certification

windows

- prefabricated elements
- thermal bridge effects


- air tightness
- hygro-thermal behavior of envelope elements

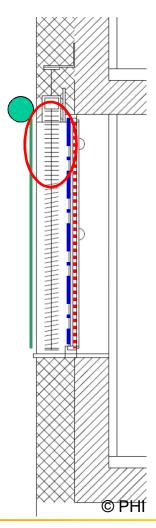

Crucial aspects in hot and humid climates

- Reduce exterior loads (heat & humidity) shading!
- Reduce interior loads (heat & humidity)
- allow for slightly higher temperatures:
 26°C and 60% r.H. is quite good (if outside temp > 35°C)
- higher temperatures are acceptable with low humidity
- Use passive means if possible (e.g. natural ventilation, humidity recovery etc.)

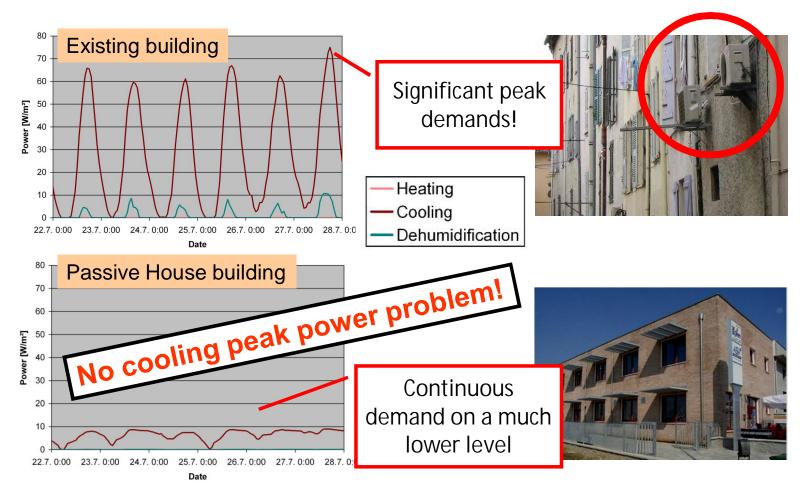
Implement efficient cooling technology

- with independently working
- sensible cooling........ and dehumidification
- always care for controlled & balanced ventilation
- trust in ... low power cooling

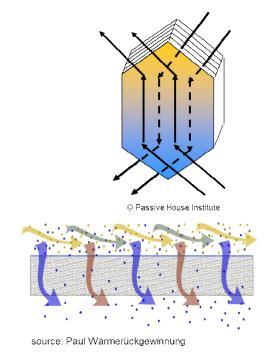
Shading: Solutions and Products

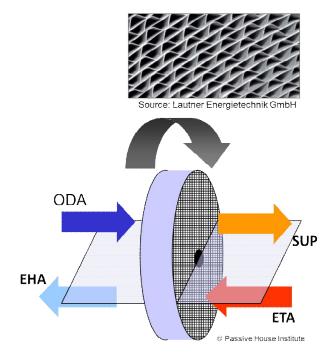

 Lamella: Perforation helpful for transparency separated top/down lamella

- Curtains (semi-transparent): Issues: wind may destroy curtains, noise
- Lamella in between glass panes: glazing edge should be thermally separated
- Electrochromic glazing: question: g_{open} / g_{closed} (g_{open} ≤ 0.3 is too low)



low power cooling helps for power supply, too!

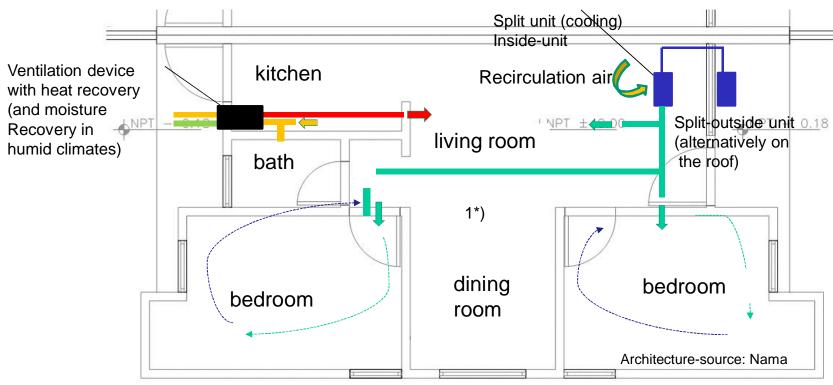

source: Passive Houses in South West Europe; J.Schnieders; PHI; 2009



In hot and humid climates....

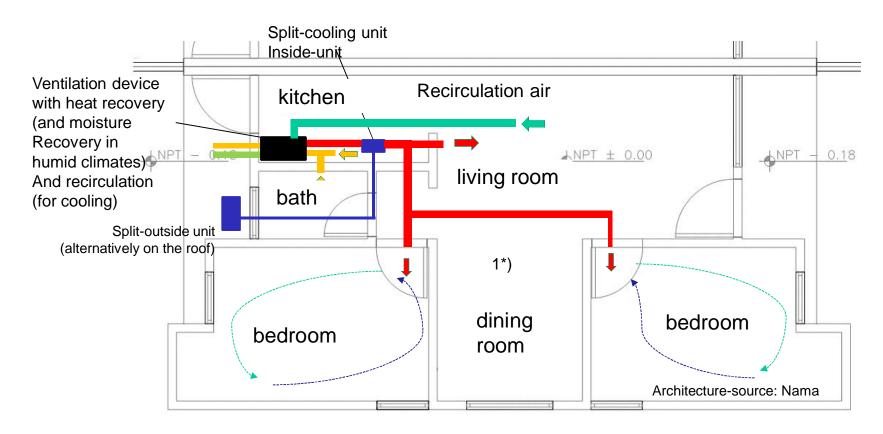
... we as well need balanced mechanical ventilation!

- Moisture recovery > 60% (as much as possible)
 - Counter flow heat exchanger with water-permeable membrane for moisture recovery
 - Rotary wheel with sorption surface



... we need mechanical ventilation ...!

... with HR and Moisture Recovery to support cooling


1*) Additional: dehumidification in the living area (hot and humid climates only)

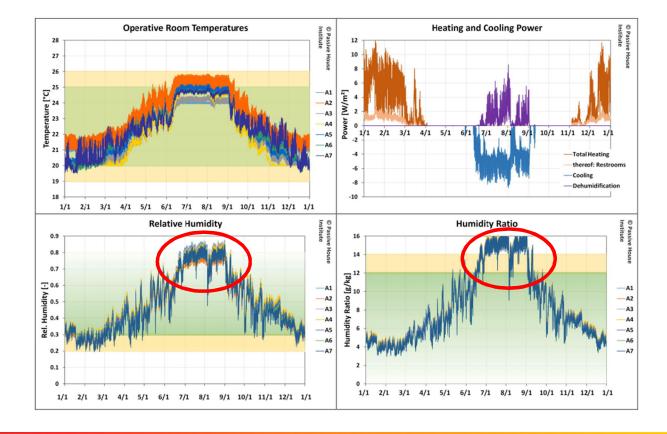
Building services – concept 1 (based on readily existing components)

... we need mechanical ventilation ... (!)

... with HR and Moisture Recovery to support cooling

1*) Additional: dehumidification in the living area (hot and humid climates only)

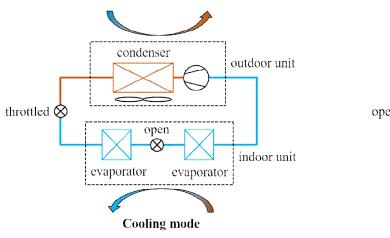
Building services – concept 2b cooling unit with recirculation air

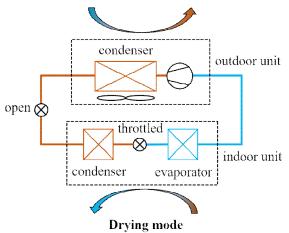


remember! - typical split units....

.... must be modified to meet appropriate sensible/latent ratio

 typical split unit in a PH-apartment (Beijing) will provide good summer indoor temperatures, but leave too high indoor humidity


China Climate-Zone Study page 28



AC-Systems based on minisplit need re-design

minisplit + internal condenser

ventilation with heat&humidity recovery can support AC

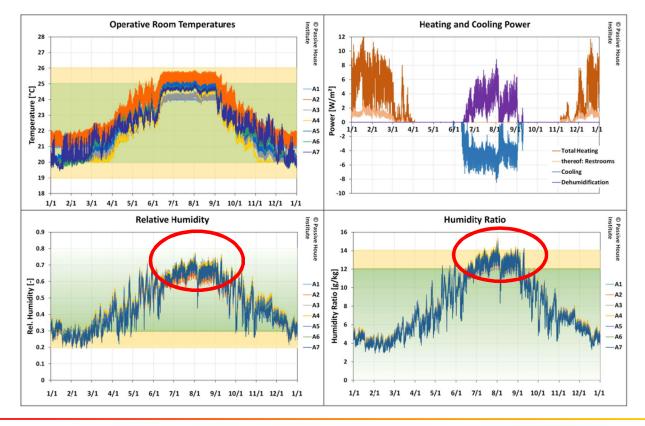
both has to be combined

sensible cooling load is well reduced in PH

SHR SensibleHeatRatio (sensible / total) becomes lower ≤ 0.5

humidity control becomes crucial

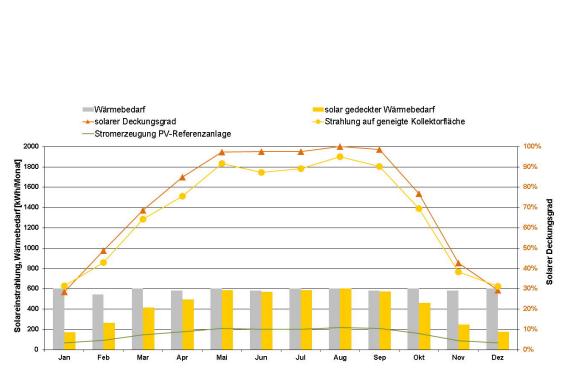
Such products are not yet very widespread on the market



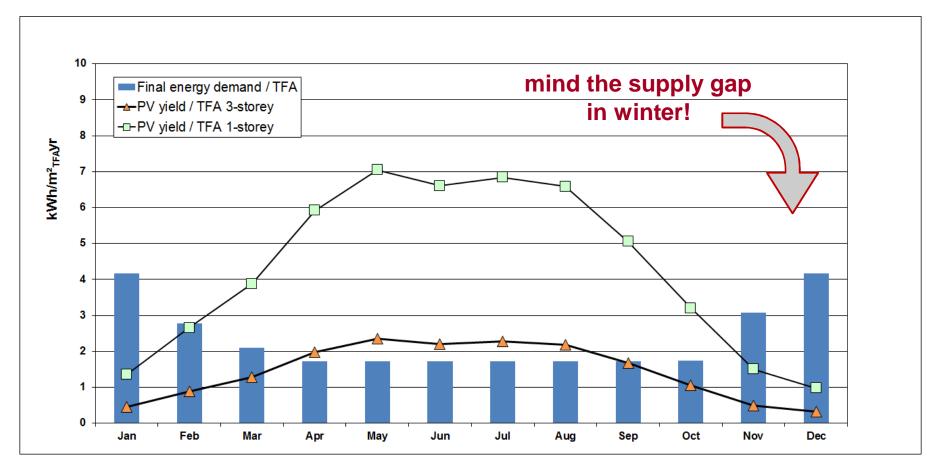
remember! - typical split units....

.... must be modified to meet appropriate sensible/latent ratio

this is done by adding an option to re-heat air after cooling when needed: when sensible cooling might be overdone


China Climate-Zone Study page 44

Solar Thermal & PV input is welcome in Passive Houses


- cold winter well insulated vacuum tube collectors needed
- monthly energy balance in PHPP shows relevant parameters
- example: Urumqi Xingfubao Passive House building

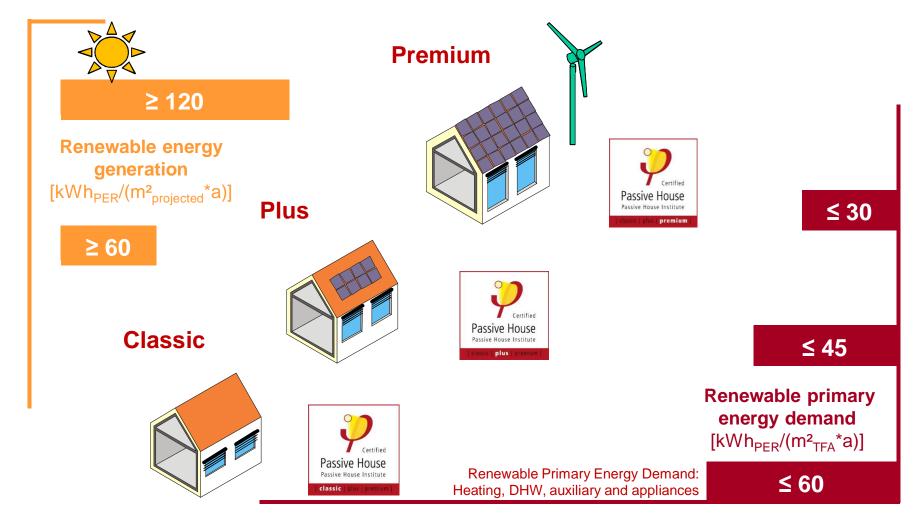
be careful: simple net-zero does not make sense!

Approx. energy demand of a bungalow & three-storey PH with HP as heating supply compared to PV generation on 80% of the respective roof area (Germany).

Account for Primay Energy Renewable (PER) input

Typical PER weighting factors

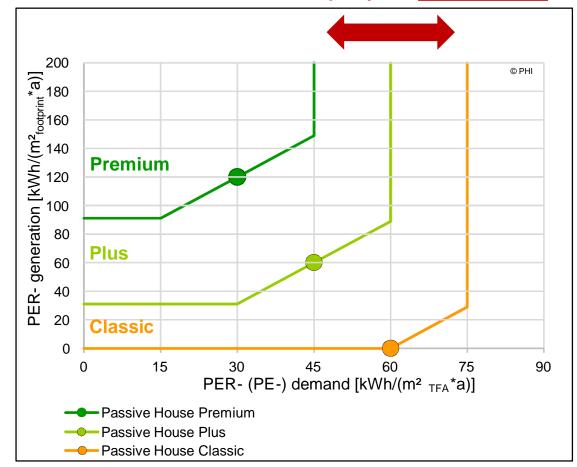
Electricity Hot water PER ~1.3


Heating

PER ~1.7 in heating climates

Cooling & Dehumidification PER ~ 1 in heating climates PER ~ 1.5 in cooling climates

The new Passive House classes including PER assessment



The new PH classes including PER assessment

+/- 15 kWh/m² per yr of PER demand

Offset of efficiency level +/- equivalent PER supply

Quality Assurance is crucial

- Q&A is a consultation process during planning&realisation
- certification (label) is the result of a successful Q&A process
- certification is more than just a business model

Certification of buildings:

Based on PHPP Verification required e.g. of component specifications, thermal bridges and

Certification of suitable components

- Window and door frames
- Glazing
- Ventilation units
- Compact heat pump units
- Prefabricated houses
- Connection details
- •

Criteria available at

www.passivehouse.com

Why component development is important

- Research is the one precondition for development.
- Regionally produced and locally available Passive House components are the second key to successful development!
- PHI helps manufacturers to develop high quality components
- PHI supports component development by certification
- Certification makes data available for PHPP
- ... Independent verification of specifications

Marketing — is a side effect...

- Listing in the Passive House component database
- Sales promotion and visibility
 via Certified Passive House Component seal

Passive House Building design in a nutshell.....

Contents and Summary

what is essential for Energy Efficient Passive House buildings!

- thermal insulation layer (thick enough!) is absolutely needed
- thermal bridge optimized design, air-tightness and good windows
- fresh-air-ventilation system with heat recovery
- low power heating (AC) system including hot water preparation

everything is economically reasonable for new built and reftrofit (EnerPHit)

Renewable Energy (PV) is welcome: PER assessment

- Quality control has to be done during realization:
- training of tradesperson is crucial!
- Routine helps for Quality!.... repeat again, what you have learned once!

Renovation of Historical building in Songyang, China

Historical building with HP-combi-system

- Passive building envelope: airtight, very good thermally insulated...
 - ... is a precondition for low power cooling & dehumidification

Ao'ni courtyard project in Songyang

Thank you!

Further information

- www.passivehouse.com
- www.passipedia.org
- www.passivehouse-international.org
- www.europhit.eu

International Passive House Conference